The Evidence Basis of Extra-osseous Talotarsal Stabilization (EOTTS)

When compared to other surgical treatment options, the benefits far outweigh any potential risks.

BY MICHAEL E. GRAHAM, DPM

There has been a struggle over the past few decades to gain acceptance by the insurance industry to reimburse surgeons and facilities for internally re-aligning and stabilizing one of the most important weight-bearing joints, the talotarsal joint (TTJ). Their primary excuse for not paying, “covering” this life-changing solution, is the lack of scientific evidence. They label extra-osseous talotarsal stabilization (EOTTS) as “experimental or investigation- al.” How long they can continue to call it that remains a mystery. This extremely crucial treatment option, EOTTS, serves as an important piece of the puzzle to maintain balance, stability, and alignment within the foot and proximal musculoskeletal structures.

The Importance of an Aligned and Stable TTJ

The TTJ, acetabulum pedis, is the foundation joint of the body. It is responsible for handling the vertical forces from above, and the weight-bearing surface from below. Approximately, half of those forces should act on the posterior talocalcaneal facet and the remaining forces act on the facets anterior to the sinus tarsi. When standing, the talus should be neutral to slightly pronated on the calcaneus and navicular. TTJ range of motion, during ambulation, consists of approximately two thirds supination and only a slight amount of pronation at the beginning of the mid-stance phase. It is more important that the TTJ is in a supinated position throughout the majority of the contact phase of the gait cycle. This position strengthens the joints within the foot structure to increase the efficiency of the complex foot mechanism.

Walking is the most common form of human locomotion. The average person takes approximately 6,000-10,000 steps a day. This adds up to 72 million steps by the age of 40, and over 100 million steps by the age of 60. A stable and aligned TTJ creates an efficient transfer of weight-bearing forces and minimal amount of muscle activity.

Recurrent Talotarsal Joint Dislocation (RTTJD)

A pathologic condition exists where the weight-bearing alignment and stability of the TTJ is lost. TTJ instability leads to mis-alignment within the TTJ, resulting in an excessive medial, anterior, and/or plantarflexion of the talus with the calcaneus and navicular. The articular facets of the talus on the calcaneus and navicular are no longer in constant congruent contact. This orthopedic abnormality is referred to as a dislocation.

To be clear, a dislocation is defined as the incongruency of articular facet alignment/contact. There are many varieties of dislocation, just like there are many types of fractures. A stress fracture is still a fracture. A mild ingrown toenail is still an ingrown toenail. Dislocations are further classified as acute, non-acute, partial, and total. RTTJD is a dynamic pathology where the articular facets of the TTJ continuously transition from normal to abnormal contact during the weight-bearing positions. The TTJ facets are in normal alignment during non-weight-bearing and transition to incongruency while weight-bearing. This deformity can be documented by simply taking a non-weight-bearing lateral radiograph of the rearfoot compared to a weight-bearing radiograph.

The destructive nature of this deformity is due to imbalance of weight-bearing forces that should be passing posteriorly but are now acting anteriorly on the medial column of foot bones. Even worse is the prolonged unlocking of the foot structure when it should be locked and supinated, to propel the foot forward. The combination of an unlocked, loose-joint foot structure, combined with excessive forces acting on it, creates a loss of homeostasis.

Ligaments contain neurosensors, Golgi bodies that detect excessive joint motion. They trigger a reflex mechanism to the muscle-tendon complex to contract. This is an attempted form of compensation for the unnatural

Continued on page 114
joint instability. Soft tissues can compensate for these excessive forces for only a specific, limited time period. Eventually, a critical threshold is reached where the soft tissues are no longer able to handle the force. This is when soft tissue pathology/symptomatology begins. The soft tissue pathology will be nearly impossible to repair until the realignment and stability of the TTJ is achieved. The associated joints will also become diseased due to the chronic disease process.

There is no evidence that RTTJD will auto-repair. It will not get better. It is a progressive orthopedic deformity. Soft and osseous tissue adaptations will occur according to Wolff and Davis’ laws. This is one of the reasons why RTTJD leads to tissue and joint destruction within the foot and to the proximal musculoskeletal structures. This is also why there is a strong medical necessity to maintain the alignment and stability of the TTJ.

A diagnosis of RTTJD can be observed clinically and confirmed with specific radiographic findings (Figures 1 & 2).

Clinical Exam
- Non-weight-bearing—TTJ range of motion >6 degrees of pronation (note: this is not calcaneal inversion/eversion of the posterior subtalar joint, rather talotarsal range of motion)
- Weight-bearing observations can include:
 - Bulging of the head of the talus on the inner ankle, giving the appearance of two inner ankle bones.
 - “Too-many-toes” sign—the ability to see more than just the fifth toe when examining at the foot posteriorly.
 - A lowering/flattening of the arch (arch height is not consistent, and therefore, not a reliable finding).
 - Calcaneal valgus (not always present).

Weight-bearing Radiographic Exam
- Lateral view
- Obliteration of the sinus tarsi, partial to full
- Talar declination angle > 21 degrees
- Plantarflexed navicular, compared to the cuboid (observation)
- Anteriorly deviated cyma/distal slide of the talus on the calcaneus (observation)
- Deviated talar first metatarsal angle
- Dorsoplantar view
- Talar 2nd metatarsal angle > 16 degrees
- Talocalcaneal angle > 40 degrees
- Talonavicular coverage > 7 degrees

Treatment of RTTJD
The primary goal of treatment is to maintain the stability and alignment of the articular facets of the TTJ. Accomplishing this goal while continuing to maintain a normal range of TTJ motion has been the preferred method over the complete elimination of TTJ range of motion. It is for that reason specifically that orthopedic innovators have tirelessly dedicated their efforts to achieve this result. External modalities may be able to provide short-term relief to secondary symptoms attributed to RTTJD. However, the reality is that there is no evidence that external treatments can succeed at re-aligning and maintaining the articular facets of the TTJ. Evidence has proven this fact.6 The use of devices such as arch supports—plantar foot orthotics—provides a sub-therapeutic, short-term option in the treatment of RTTJD.

EOTTS is a time-tested, evidenced-based, soft tissue procedure where an orthopedic stent is inserted into the sinus tarsi.6,7 There are more than a dozen FDA-cleared devices being routinely used within the United States. In fact, these sinus tarsi stents are regularly recommended to patients by both orthopedic and podiatric surgeons globally. Their use is advocated at orthopedic and podiatric medical conferences world-wide. The use of sinus tarsi implants has been positively documented within chapters of many well-known orthopedic and podiatric textbooks. The advocacy for the EOTTS procedure has

Continued on page 115
What is the minimum level of evidence required to consider EOTTS effective?

There seems to be a double standard for the requirements from the insurance industry to consider an evidence-based treatment. Let’s approach this with the following questions in mind: What does the EOTTS procedure “fix”? Is there evidence, clinical and radiographic, that it achieves that goal? Has this procedure been shown to be safe for its intended use? Is there evidence that EOTTS provides positive patient reported outcomes? Are there proven advantages of EOTTS? Do other “similar” methods realign and stabilize the TTJ? Are there any associated complications commonly reported when compared to other accepted forms of treatment?

1) Is there evidence that the EOTTS procedure maintains the stability and alignment of the TTJ clinically and radiographically?

Yes! There have been multiple published studies showing reduction/normalization of pre-EOTTS pathologic findings.

Clinical findings: Non-weight-bearing: TTJ range of pronatory range of motion <6 degrees.

- Reduction of valgus alignment of the foot to lower leg
- Reduction of medial talar head bulging
- Normalization of arch height, if previously lower than normal
- Normalization of calcaneus valgus
- Reduction of “too many toes” sign
- Reduction of abductory twist
- Normalization of pronation during the gait cycle

Continued on page 116
Gait Analysis:42

- Normalization of center of force pressures acting on the plantar surface of the foot.
- Radiographic evidence:11,16,19,20,30,37,41,50,53,56,65,66

Lateral (sagittal plane):
- Talar declination angle
- Calcaneal inclination angle
- Talar-first metatarsal angle
- Normalization of navicular position

Dorsoplantar (transverse plane):
- Talar 2nd metatarsal angle
- Talar 1st metatarsal angle
- Talocalcaneal angle
- Talonavicular coverage

2) Is there evidence that the EOTTS procedure normalizes the range of motion of the TTJ?

Yes! Simply by realigning and stabilizing the TTJ. Clinical and radiographic evidence is all that is needed. Actually, proving TTJ range of motion should not be a consideration for the evidence basis of EOTTS. A similar accepted treatment that would be a covered benefit, without question, is a functional amputation of the plantar surface of the foot. There have been only a few single-case reports of EOTTS. 11,16,20,24,26,37,53,62.

A key advantage of EOTTS is that unlike arthrodesis, it still allows the normal TTJ range of motion to take place.

3) Is there evidence that the EOTTS procedure normalizes the joint forces acting on the tarsal mechanism?

Yes! Published data shows that there is a normalization of forces acting on the TTJ. There is no data to show similar results with other “accepted” forms of treatment, i.e., lateral column lengthening, medial displacement, calcaneal osteotomy, talonavicular arthrodesis, or subtalar arthrodesis.

4) Is there evidence that a patient’s quality of life is made better after undergoing EOTTS?

Yes! Re-alignment of the TTJ decreases the tissue and osseous strain within the foot and to the proximal joint structures. Ligament strain is decreased, which stops the muscle-tendon compensations. Muscles work more efficiently, and tendon strain is decreased. Patients are able to become more physically active and report improved functional scores following EOTTS. 11,16,20,24,26,37,53,62,65,66 EOTTS functions better than external modalities and without the risks and complications associated with other more aggressive surgical procedures.

5) What are the reported “worst case” complications?

There will always be potential risks associated with any form of treatment, no matter how conservative that treatment. The main point to grasp in this section is: does EOTTS present similar or greater risks when compared to other recognized surgical treatment options? EOTTS has been performed for many decades and it is estimated that more than 250,000 EOTTS procedures have been performed globally. Yet, only a few “complications” have been reported.70,71

Orthopedic implants such as screws, staples, pins, and plates have a history of breakage. This complication has never been reported with any titanium sinus tarsi stent. Many surgeons will “routinely” remove non-sinus tarsi stent devices that are present in their patients’ feet. EOTTS stents have a significantly lower removal rate compared to other internal forms of TTJ stabilization devices. 11,16,20,24,26,37,62

There are many other complications that arise from other methods of TTJ stabilization.72 Subtalar joint arthrodesis is proven to cause arthritic changes to adjacent joints within six months73—this has not been a finding associated with EOTTS. There are mal- and non-unions rates with subtalar arthrodesis procedures.73 These are very costly complications that will never occur with EOTTS. Cutting and removing the articular surfaces of the posterior talocalcaneal joint will be associated with a loss of calcaneal-talar height. This can lead to a leg-length discrepancy; this is not found with EOTTS.

There have been only a few single-case reports of...
complications following the EOTTS procedure. These “worst case” situations could have been prevented if their physician had intervened earlier. Both were due to a mal-positioned stent. The sinus tarsi stent should have been re-positioned or simply removed. The surgeon observed the mal-placed stent but simply allowed the patient to continue to walk without addressing it. This would be similar to the mal-placement of a screw that extended into a joint. Eventually, that mal-positioned screw would lead to arthritic changes within the joint. It was surgeon error, not device error. There was another case where an athletic patient had the EOTTS procedure and subsequently developed a stress fracture of the talus. The correlation between the talar stress fracture and the sinus tarsi stent was not “proven.” Talar stress fractures occur in highly active patients without a sinus tarsi implant in their foot. If the primary cause of the stress fracture was the stent, then there should be more reported cases—not just a single case of a patient who competed in “at risk/impact” sports for many years.

The bottom line is that any less-than-favorable situations arising from the insertion of a sinus tarsi stent is significantly less frequent than complications associated with other orthopedic stabilization devices. This proves that sinus tarsi implants provide a conservative option in the treatment of RTTJD with fewer complications.

There are also many secondary supportive evidence-based publications proving the powerful role of the EOTTS procedure to other important structures such as:

- Reduction of strain on the posterior tibial tendon by 51%.
- Reduction compression forces within the tarsal tunnel 34% and porta pedis 38%.
- Reduction of elongation strain to the posterior tibial nerve by 43%.
- Reduction of strain on the medial band of the plantar fascia by 33%.

The accepted “conservative” recommendation for the treatment of these secondary tissue diseases does not provide any evidence to reduce the underlying destructive force acting on those tissues. These measures are only focused on the temporary masking of symptoms. This shows that EOTTS is an important aspect of treatment for many secondary pathologies.

Unrealistic evidenced-based expectations have been suggested and unfair comparisons have been made to the quality and number of patients included in published studies. These critics must realize that there is limited funding for foot/ankle related studies compared to the prospective studies in the pharmaceutical arena, or even for more commonly performed orthopedic procedures.

Simply, the number of physicians and the multi-millions of dollars needed for the “desired” prospective, outcome-based studies on EOTTS are just not available. The demand for level 1 side-by-side comparison outcome-based studies does not always make sense. The use of a parachute while exiting a plane that is flying at 30,000 feet in the air is not evidence-based. They could not find enough people to jump out of the plane without a parachute to show the efficacy of someone jumping out with a parachute.

Finally, many of the insurance carriers claim they won’t cover EOTTS because it treats hyper-pronation or flat feet. Again, a double standard is used to shoot down EOTTS. One simple question must be asked. What is the primary reason a lateral column lengthening, medical displacement osteotomy, Kidner, spring ligament repair, subtalar arthrodesis, talonavicular and calcaneocuboid arthrodesis are performed? To fix a hyper-pronated, flat foot. Doesn’t it make sense that a more conservative treatment with fewer risks and complications also should be covered?

Continued on page 118
Summary

EOTTS is a minimally invasive procedure that exceeds the requirements of being evidence-based. The ability of a surgeon to internally realign and stabilize the TTJ, while still allowing a normal range of motion, is essential in the treatment of many lower extremity pathologies. EOTTS normalizes the forces acting within the foot structure, and instantly decreases forces acting on the bones, joints, tendons, ligaments, and neurovascular structures of the foot. Because the ankle joint is realigned, there are positive effects to the knees, hips, pelvis, and spine. This procedure is reversible. It can be used in conjunction with both external measures and other surgical procedures. This soft tissue procedure can and is commonly performed on both children and adults.

There are many reasons why EOTTS devices have been approved and are being performed in more than 70 countries. When compared to other surgical treatment options, the benefits far outweigh any potential risks. Patients who have had the EOTTS procedure have been able to increase their activity levels, increase their metabolism, decrease their weight, and improve their blood sugar levels and blood pressure. Simply put, they get their lives back. They don’t have to think about whether an activity is worth the pain they once experienced when standing or walking. PM

Editor’s Note: Readers should be aware that Podiatry Management does not specifically endorse any of the technologies, concepts, or products discussed in our “Clinical Innovations” series.

References

There are many reasons why EOTTS devices have been approved and are being performed in more than 70 countries.

26. Garras DN, Hansen PL, Miller AG, Raikin SM. Outcome of modified Kidner procedure with subtalar arthroereisis for painful ac-

47. Cicchinelli LD, Pascual Huerta J, Garcia Carmona FJ, Fernandez Morato D. Analysis of gastrocnemius recession and medial column procedures as adjuncts in arthroereisis for the correction of Continued on page 120

72 Zanoli DH, Nunley JA 2nd, Easley ME. Subtalar fusion Rate in patients with previous ipsilateral ankle arthrodesis. Foot Ankle Int. 36(9):1025-8, 2015.

Dr. Graham is a board-certified podiatric foot & ankle surgeon and the inventor of the HyProCure sinus tarsi stent. He founded GraMedica, an orthopedic medical device company in 2003 and received FDA clearance of HyProCure in 2004. He also founded the Graham International Implant Institute, a research and educational company to promote the advancement of the foot and ankle knowledge base. Dr. Graham has authored more than a dozen peer-reviewed scientific manuscripts and he lectures extensively all over the world on foot & ankle-related topics.